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57 ABSTRACT
Techniques are disclosed for training and applying a denois-
ing model. The denoising model includes multiple special-
ized denoisers and a generalizer, each of which is a machine
learning model. The specialized denoisers are trained to
denoise images associated with specific ranges of noise
parameters. The generalizer is trained to generate per-pixel
denoising kernels for denoising images associated with
arbitrary noise parameters using outputs of the specialized
denoisers. Subsequent to training, a noisy image, such as a
live-action image or a rendered image, can be denoised by
inputting the noisy image into the specialized denoisers to
obtain intermediate denoised images that are then input,
along with the noisy image, into the generalizer to obtain
per-pixel denoising kernels, which can be normalized and

applied to denoise the noisy image.

[ 800

Train specialized denoisers using respective
training sets of images that are associated
with different sets of noise parameters

.~ 802

Train generalizer using additional training set
of images and denoised images output by the
specialized denoisers

_~ 804
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?/ 800

Train specialized denoisers using respective
fraining sels of images that are associated 7 802
with different sets of noise parameters

4

Train generalizer using additional training set 804
of images and denoised images output by the |~
specialized denoisers
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900
{

Receive noisy image _— 902

.4

{Optionally) Downsample the noisy image [~ 904

A4

Process each of the noisy image and the
downsampled images {if any) using
specialized denoisers o generate intermediate |~ 908
denoised images that are o be used as
denoised-image features

¥

Process each of the noisy image and the
downsampled images (if any), slong with |- 908
associated denoised image features, using
generalizer to generale additional intermediate
denoised images

X

{Optionally} Combine the additional
intermediate denoised images 1o generale ™ 910
dencised image

FIG. 9
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TECHNIQUES FOR ROBUST IMAGE
DENOISING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority benefit of the
United States Provisional Patent Application titled,
“ROBUST IMAGE DENOISING USING KERNEL PRE-
DICTING NETWORKS,” filed on Nov. 15, 2019 and hav-
ing Ser. No. 62/936,341. The subject matter of this related
application is hereby incorporated herein by reference.

BACKGROUND

Technical Field

[0002] Embodiments of the present disclosure relate gen-
erally to image processing and denoising and, more specifi-
cally, to techniques for robust image denoising.

Description of the Related Art

[0003] Image noise refers to random variation in the color
and/or brightness within images. Noise is a typical byprod-
uct in images that are rendered using Monte Carlo rendering
techniques. Images (i.e., photographs) captured by cameras
can also contain noise due to the mechanics of camera
sensors. For example, the quality of images captured in
low-lighting conditions can be adversely affected by noise.
[0004] Image denoising is the process of removing noise
from an image. Conventional approaches for image denois-
ing utilize either specialized denoisers or “blind” denoisers.
Specialized denoisers, such as deep denoising networks, can
be trained to remove specific types of noise from images,
where the noise is typically within narrow ranges of one or
more noise parameters, such as additive white Gaussian
noise having a certain magnitude. However, the perfor-
mance of specialized denoisers drops rapidly for images
having noise with noise parameters that are different than the
training noise parameters.

[0005] In contrast to specialized denoisers, blind denoisers
are typically trained using images having noise with diverse
noise parameters. Although blind denoisers can be robust to
different noise parameters, such robustness comes at the cost
of overall denoising quality. In particular, the denoising
quality of blind denoisers is generally lower than specialized
denoisers for images having noise with the particular noise
parameters that the specialized denoisers were trained to
denoise.

[0006] Currently, there are few, if any, denoising tech-
niques that optimally balance or combine the denoising
quality of specialized denoisers with the denoising robust-
ness of blind denoisers.

[0007] As the foregoing illustrates, what is needed in the
art are more effective techniques for denoising images.

SUMMARY

[0008] One embodiment of the present application sets
forth a computer-implemented method for denoising an
image. The method includes processing the image using a
plurality of first denoisers to generate a plurality of first
denoised images, where each first denoiser is trained to
denoise images associated with at least one noise parameter.
The method further includes processing the image and the
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plurality of first denoised images using a second denoiser to
generate a second denoised image.

[0009] Another embodiment of the present application
sets forth a computer-implemented method for training
denoisers. The method includes training each first denoiser
included in a plurality of first denoisers using a respective set
of images associated with at least one noise parameter and
ground truth images corresponding to images included in the
respective set of images. The method further includes train-
ing a second denoiser using an additional set of images,
ground truth images corresponding to images included in the
additional set of images, and a plurality of denoised images,
where the plurality of denoised images is generated by
processing the additional set of images using the plurality of
first denoisers.

[0010] Other embodiments of the present disclosure
include, without limitation, a computer-readable medium
including instructions for performing one or more aspects of
the disclosed techniques as well as a computing device for
performing one or more aspects of the disclosed techniques.
[0011] At least one technical advantage of the disclosed
techniques relative to the prior art is that the disclosed
techniques bypass the traditional tradeoff between the
denoising quality of specialized denoisers and the general-
izability and robustness of blind denoisers. In that regard,
the disclosed techniques combine the performance of spe-
cialized denoisers with the generalizing capabilities of blind
denoisers. Experience has shown that the disclosed tech-
niques can achieve better denoising quality than conven-
tional specialized denoisers when applied to images having
noise with arbitrary noise parameters, such as different noise
magnitudes. The disclosed techniques also can achieve
better overall denoising quality than conventional blind
denoisers. In addition, the disclosed techniques can denoise
images more quickly than many conventional denoisers.
These technical advantages represent one or more techno-
logical improvements over prior art approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] So that the manner in which the above recited
features of the disclosure can be understood in detail, a more
particular description of the disclosure, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this disclosure and are therefore not
to be considered limiting of its scope, for the disclosure may
admit to other equally effective embodiments.

[0013] FIG. 1 illustrates a system configured to implement
one or more aspects of the various embodiments;

[0014] FIG. 2 is a more detailed illustration of the denois-
ing model of FIG. 1, according to various embodiments;
[0015]
[0016] FIG. 3B illustrates exemplar features generated by
the specialized denoisers of FIG. 1 for the exemplar region
of FIG. 3A, according to various embodiments;

[0017] FIG. 4 is a more detailed illustration of the denois-
ing application of FIG. 1, according to various embodi-
ments;

[0018] FIG. 5 is a more detailed illustration of the model
trainer of FIG. 1, according to various embodiments;
[0019]

FIG. 3A illustrates an exemplar noisy image;

FIG. 6A illustrates another exemplar noisy image;
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[0020] FIG. 6B illustrates a denoised image generated
using a conventional blind denoiser, according to the prior
art;

[0021] FIG. 6C illustrates a denoised image generated
using the specialized denoisers and the generalizer of FIG.
1, according to various embodiments;

[0022] FIG. 7A illustrates another exemplar noisy image;
[0023] FIG. 7B illustrates a denoised image generated
using a conventional specialized denoiser, according to the
prior art;

[0024] FIG. 7C illustrates a denoised image generated
using the specialized denoisers and the generalizer of FIG.
1, according to various embodiments;

[0025] FIG. 8 sets forth a flow diagram of method steps for
training multiple specialized denoisers and a generalizer,
according to various embodiments; and

[0026] FIG. 9 sets forth a flow diagram of method steps for
denoising an image, according to various embodiments.

DETAILED DESCRIPTION

[0027] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing of the present invention. However, it will be apparent to
one of skill in the art that embodiments of the present
invention may be practiced without one or more of these
specific details.

System Overview

[0028] FIG. 1 illustrates a system 100 configured to imple-
ment one or more aspects of the various embodiments. As
shown, the system 100 includes a machine learning server
110, a data store 120, and a computing device 140 in
communication over a network 130, which may be a wide
area network (WAN) such as the Internet, a local area
network (LAN), or any other suitable network.

[0029] As shown, a model trainer 116 executes on a
processor 112 of the machine learning server 110 and is
stored in a system memory 114 of the machine learning
server 110. The processor 112 receives user input from input
devices, such as a keyboard or a mouse. In operation, the
processor 112 is the master processor of the machine learn-
ing server 110, controlling and coordinating operations of
other system components. In particular, the processor 112
may issue commands that control the operation of a graphics
processing unit (GPU) that incorporates circuitry optimized
for graphics and video processing, including, for example,
video output circuitry. The GPU may deliver pixels to a
display device that may be any conventional cathode ray
tube, liquid crystal display, light-emitting diode display, or
the like.

[0030] The system memory 114 of the machine learning
server 110 stores content, such as software applications and
data, for use by the processor 112 and the GPU. The system
memory 114 may be any type of memory capable of storing
data and software applications, such as a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash ROM),
or any suitable combination of the foregoing. In some
embodiments, a storage (not shown) may supplement or
replace the system memory 114. The storage may include
any number and type of external memories that are acces-
sible to the processor 112 and/or the GPU. For example, and
without limitation, the storage may include a Secure Digital
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Card, an external Flash memory, a portable compact disc
read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing.

[0031] It will be appreciated that the machine learning
server 110 shown herein is illustrative and that variations
and modifications are possible. For example, the number of
processors 112, the number of GPUs, the number of system
memories 114, and the number of applications included in
the system memory 114 may be modified as desired. Further,
the connection topology between the various units in FIG. 1
may be modified as desired. In some embodiments, any
combination of the processor 112, the system memory 114,
and a GPU may be replaced with any type of virtual
computing system, distributed computing system, or cloud
computing environment, such as a public, private, or a
hybrid cloud.

[0032] As discussed in greater detail below, the model
trainer 116 is configured to train machine learning models,
including multiple specialized denoisers 152, ,,, which are
individually referred to as a specialized denoiser 152 and
collectively referred to as specialized denoisers 152, and a
generalizer 154. Each of the specialized denoisers 152 is
trained to denoise images associated with specific ranges of
noise parameters (i.e., images having noise with noise
parameters that are within the specific ranges). For example,
the specific ranges of noise parameters could indicate a
particular type of camera sensor or a particular range of
Gaussian noise magnitudes. By contrast, the generalizer 154
is trained to generate per-pixel kernels (i.e., individual
kernels for each pixel) for denoising images associated with
arbitrary noise parameters, as opposed to specific ranges of
noise parameters. As described in greater detail below, the
generalizer 154 receives as input an image to be denoised as
well intermediate denoised images generated by the special-
ized denoisers 152 after the same image is input into the
specialized denoisers 152. Denoised images output by the
specialized denoisers 152 are referred to herein as interme-
diate denoised images to distinguish them from the denoised
images output by an overall denoising model 150 that
includes both the specialized denoisers 152 and the gener-
alizer 154, discussed in greater detail below. The generalizer
154 is an example of a second denoiser (with the specialized
denoisers 152 being the first denoisers) that can be trained
and applied to denoise images given the images themselves,
as well intermediate denoised images output by the special-
ized denoisers 152, as input. Any technically feasible second
denoiser may be used in other embodiments. For example,
the second denoiser may generate outputs other than denois-
ing kernels, such as denoised images, in some embodiments.
[0033] The architectures of the specialized denoisers 152
and the generalizer 154, as well as techniques for training
the same, are discussed in greater detail below. Training data
and/or trained machine learning models, including the spe-
cialized denoisers 152 and the generalizer 154, may be
stored in the data store 120. In some embodiments, the data
store 120 may include any storage device or devices, such as
fixed disc drive(s), flash drive(s), optical storage, network
attached storage (NAS), and/or a storage area-network
(SAN). Although shown as accessible over the network 130,
in some embodiments the machine learning server 110 may
include the data store 120.

[0034] The trained specialized denoisers 152 and gener-
alizer 154 may be deployed to any suitable applications that
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denoise images. [llustratively, a denoising application 146 is
stored in a memory 144, and executes on a processor 142 of
the computing device 140. Components of the computing
device 140, including the memory 144 and the processor 142
may be similar to corresponding components of the machine
learning server 110.

[0035] As shown, the denoising application 146 includes
the denoising model 150, which itself includes the special-
ized denoisers 152 and the generalizer 154. As described,
each of the specialized denoisers 152 is a machine learning
model trained to denoise images associated with a specific
range of noise parameters. In some embodiments, the spe-
cialized denoisers 152 may be denoising convolutional
neural networks (DnCNNs), discussed in greater detail
below. In alternative embodiments, the specialized denoisers
152 may be other types of denoisers, such as U-net archi-
tecture networks. Any number and type of specialized
denoisers 152 may be employed in embodiments. For
example, three specialized denoisers may be used in some
embodiments. In general, if the parameter space of the noise
is more complex, then more specialized denoisers may be
used, and vice versa if the parameter space of the noise is
simpler. It should be noted that there is a trade-off between
denoising performance and the number of specialized
denoisers 152, as adding specialized denoisers 152 generally
increases computational costs.

[0036] As described, the generalizer 154 is trained to
generate per-pixel denoising kernels for denoising images
having noise with arbitrary noise parameters. The general-
izer 154 takes as input noisy images, as well as intermediate
denoised images generated by the specialized denoisers 152,
which are input into the generalizer 154 as additional
features and also referred to herein as “denoised-image
features.” The noisy image may generally be any image that
a user wishes to denoise. Examples of such images include
live-action images captured by a camera and images ren-
dered via Monte Carlo rendering techniques. For example, a
live-action image could be denoised before visual effects are
added. As another example, denoising could be applied to a
high dynamic range image, which can include a relatively
large amount of noise. As yet another example, denoising
could be used to accelerate rendering by denoising an initial
noisy image generated via Monte Carlo rendering.

[0037] In some embodiments, the generalizer 154 is a
kernel-generating machine learning model, such as a kernel
predicting convolutional network (KPCN). As discussed in
greater detail below in conjunction with FIGS. 2 and 9, the
denoising application 146 can denoise a noisy image by first
processing the noisy image using the specialized denoisers
152 to generate intermediate denoised images. Then, the
denoising application 146 inputs the intermediate denoised
images generated by the specialized denoisers 152 as fea-
tures, in addition to the noisy image, into the generalizer
154. In turn, the generalizer 154 outputs per-pixel denoising
kernels, which the denoising application 146 normalizes and
applies to the noisy image to generate a denoised image.
[0038] In some embodiments, discussed in greater detail
below in conjunction with FIGS. 4 and 9, multi-scale
denoising may be performed to more effectively remove
low-frequency components of noise. In such cases, a noisy
image is downsampled one or more times to different scales
prior to being input into the denoising model 150 that
includes the specialized denoisers 152 and the generalizer
154. Then, the denoised outputs of the denoising model 150
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at the different scales are combined to generate a final
denoised image. This is in contrast to simply processing the
noisy image using the specialized denoisers 152 and then
inputting the noisy image and the intermediate denoised
images generated by the specialized denoisers 152 into the
generalizer 154, as described above.

[0039] Experience has shown that the denoising model
150 can achieve better denoising quality than conventional
specialized denoisers. The denoising model 150 can also
generalize better than conventional blind denoisers. In addi-
tion, the denoising model 150 can denoise images more
quickly than some conventional denoisers. It should also be
noted that the denoising model 150 does not require noise
parameters to be explicitly estimated or a camera imaging
pipeline to be modeled.

[0040] The number of machine learning servers and appli-
cation servers may be modified as desired. Further, the
functionality included in any of the applications may be
divided across any number of applications or other software
that are stored and execute via any number of devices that
are located in any number of physical locations.

Robust Image Denoising

[0041] FIG. 2 is a more detailed illustration of the demis-
ing model 150 of FIG. 1, according to various embodiments.
In FIGS. 2 and 4-5, rectangles with rounded edges represent
software components and rectangles with square edges
represent data, which may be input into and/or output from
the software components.

[0042] As shown, the denoising model 150 is used by the
denoising application 146 to process a noisy image 202 and
obtain a denoised image 214. As described, the noisy image
202 may be, e.g., a live-action image captured by a camera
or a rendered image. Although described herein primarily
with respect to receiving and denoising a single image at a
time, in some embodiments, the denoising application 146
may process multiple image frames from a video at once,
such as a number of consecutive image frames before and
after a given image frame that is being denoised. Doing so
allows the denoising application 146 to consider temporal
neighborhoods as well as spatial neighborhoods of each
pixel.

[0043] The denoising application 146 first inputs the noisy
image 202 into the specialized denoisers 152. As described,
the specialized denoisers 152 output intermediate denoised
images that are input as additional features 204, ,, along
with the noisy image 202, into a second denoiser, which as
shown is the generalizer 154. Each of the features 204, ,,
represents characteristics of the noisy image 202, namely an
intermediate denoised version of the noisy image 202, that
is input into the generalizer 154. The features 204, ,, are
referred to herein individually as a feature 204 and collec-
tively as features 204. As the features 204 include denoised
images, the features 240 are also referred to herein as
“denoised-image features.” Although described herein with
respect to denoised-image features for simplicity, some
embodiments may actually employ three channels, namely
the red, green, and blue channels, for each of the denoised-
image features as well as for the noisy image.

[0044] As described, each of the specialized denoisers 152
is trained to demise images associated with a specific range
of noise parameters. The noise parameters could indicate,
e.g., a particular type of camera sensor or a particular range
of Gaussian noise magnitudes. In some embodiments, each
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of the specialized denoisers 152 is a DnCNN. The DnCNN
architecture includes blocks of convolutional layers (includ-
ing, e.g., 3x3 filters and 64 channels) followed by batch
normalization and rectified linear unit (Real) activations, as
well as a final layer (e.g., a 3x3 layer) that produces an
output. In alternative embodiments, the specialized denois-
ers 152 may be other types of denoisers, such as U-net
architecture networks.

[0045] More formally, each of the specialized denoisers
152 can be trained using noisy images having noise with a
specific set of noise parameters {Aq, A, . .., A}, Subsequent
to training, the specialized denoisers 152 may generally
perform well in denoising images associated with noise
parameters similar to those used to train the specialized
denoisers 152. However, the denoising performance of the
specialized denoisers 152 drops rapidly for images having
noise with different noise parameters.

[0046] To alleviate the inability of the specialized denois-
ers 152 to generalize over noise parameters, the denoising
application 146 further processes the noisy image 202 using
the generalizer 154, The generalizer 154 receives as inputs
the noisy image 202 and intermediate denoised images,
which are output by the specialized denoisers 152 and input
as the features 204 into the generalizer 154. As shown, the
generalizer 154 outputs per-pixel denoising kernels 206,
which are individually referred to as a denoising kernel 206
and collectively referred to as per-pixel denoising kernels
206. In some embodiments, the generalizer 154 may be a
KPCN. For computational efficiency reasons, the number of
denoised image features will generally be low, and the noise
parameters associated with an image A, may not match the
noise parameters {A,, A, . . ., A} that the specialized
denoisers 152 were trained on. The generalizer 154 is
therefore used to estimate suitable per-pixel denoising ker-
nels 206 for the noisy image 202 associated with noise
parameters A, of any input image given the image itself and
denoised-image features output by the specialized denoisers
152. Doing so produces a relatively consistent denoising
quality over a wide range of noise parameters, making the
denoising model 150 robust to image noise characteristics.
[0047] If the input noisy image 202 is treated as a vector,
which can be denoted as x€R >, then the denoised-image
features are additional channels f, each of which includes an
individual feature map {f}, f,, . . ., f,}. The generalizer 154
takes as input the tuple {x, f}. The generalizer 154 is trained
to minimize an average distance between estimated denoised
images X and corresponding noise-free ground truth images
y in a training data set. The noise-free ground truth images
in the training data set are also referred to herein as “clean”
images and may be images to which noise (e.g., Gaussian
noise) has been applied to generate noisy images. It should
be understood that the training data may generally include
such noisy images as well as the corresponding clean
images. More formally, the generalizer 154 may be
expressed as X=(d{x, f}; 8), where d denotes a denoiser with
parameters 0. During training, the parameters 6 are deter-
mined in a supervised setting using the dataset {{x', y'},
X% v*}, ..., {x7, y”}}, with the objective, or loss function,
being:

R 1y (D
b= arggrmnﬁg Iy, d(tx. £); 0).
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[0048] The trained generalizer 154 can be used to estimate
a kxk kernel of scalar weights around the neighborhood
& (p) of a pixel location p, which is also referred to herein
as the denoising kernel 206 for the pixel location p. The
denoising application 146 may then use such a denoising
kernel 206 to compute a weighted linear combination of the
pixels in the neighborhood ¥ (p) to obtain the final pixel
color prediction at the pixel location p. As shown, a nor-
malization module 208 of the denoising application 146 then
normalizes each of the per-pixel denoising kernels 206 to
generate normalized kernels 210, after which a weighted
reconstruction module 212 of the denoising application 212
applies the normalized kernels 210 to denoise the noisy
image 202 via weighted reconstruction. In some embodi-
ments, the denoising application 146 normalizes weights of
the per-pixel denoising kernels 206 using a softmax function
so that the weights have values within [0,1]. The denoised
image 214 is then output from the denoising model 150.
[0049] As described, the generalizer 154 is a KPCN in
some embodiments. The KPCN architecture includes
residual blocks, each of which can include 3x3 convolution
layers bypassed by a skip connection. As described, rather
than directly predicting pixel colors, KPCNs predict per-
pixel denoising kernels, which can provide significant
improvement in convergence speed during training. For
example, the KPCN could output a 5x5 denoising kernel for
each pixel. In some embodiments, the KPCN generalizer
154 estimates a denoising kernel at pixel location p using the
following identity:

fp:dp({xj};é):}:qéﬂf('alw X, 2)

pgT

where w,,, denotes a normalized estimated weight at location
q belonging to the kernel at pixel location p.

[0050] FIGS. 3A-3B illustrate an exemplar noisy image
and denoised-image features generated by the specialized
denoisers 152, according to various embodiments. As shown
in FIG. 3A, a noisy image 300 depicts a wooden floor. FIG.
3B shows intermediate denoised image outputs 310, 312,
and 314 generated by three specialized denoisers 152 given
the noisy image 300 as input. As described, such interme-
diate denoised images 310, 312, and 314 can be input as
additional denoised-image features into the generalizer 154.
[0051] As the specialized denoisers 152 are trained for
particular noise parameters, such as a specific noise type
(e.g., noise produced by a specific type of camera sensor) or
a range of noise parameters (e.g., additive Gaussian noise
with a specific magnitude), the quality of each intermediate
denoised image 310, 312, and 314 will vary depending on
the noise parameters associated with the input noisy image
300. As described, the generalizer 154 can be used to
improve the final denoising quality by taking as input the
intermediate denoised images 310, 312, and 314 as features
in addition to the noisy image 300.

[0052] FIG. 4 is a more detailed illustration of the denois-
ing application 146 of FIG. 1, according to various embodi-
ments. This illustration assumes that multi-scale denoising is
performed to more effectively remove low-frequency com-
ponents of noise. As described, such multi-scale denoising is
optional, and, in other embodiments, the denoising applica-
tion 146 may simply process a noisy image using the
specialized denoisers 152 and then process the noisy image
and intermediate denoised images generated by the special-
ized denoisers 152 using the generalizer 154 to obtain
per-pixel denoising kernels that can be used to denoise the
original, noisy image.
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[0053] As shown in FIG. 4, downsampling modules 408
and 416 of the denoising application 146 downsample an
input image 402 to generate downsampled images 410 and
418, respectively. In some embodiments, the input image
402 is uniformly downsampled to half the original size by
the downsampling module 408, and then downsampled
again to half the previously downsampled size (i.e., to a
quarter of the original size) by the downsampling module
416. Although one input image 402 is shown for illustrative
purposes, in some embodiments, the denoising application
146 may process multiple image frames from a video, such
as a number of consecutive image frames before and after a
given image frame that is being denoised.

[0054] As shown, the denoising application separately
inputs the image 402 and the downsampled images 410 and
418 into the denoising models 150, _;, to obtain an interme-
diate denoised image 406, an intermediate denoised image
414, and an intermediate denoised image 422, respectively.
Each of the denoising models 150, , shown in FIG. 4 is the
same as the denoising model 150, and processing of the
image 402 and the downsampled images 410 and 418 using
the denoising models 150, ; may either be performed in
parallel or serially. As described, the generalizer 154 of the
denoising model 150 outputs, for each pixel location, a
respective kernel (e.g., a fixed-size 5x5 kernel). By deter-
mining such per-pixel kernels at different scales obtained via
downsampling, the effective kernel size is increased. Doing
so increases the perceptive field and helps remove low-
frequency components of noise, which can be more chal-
lenging to remove and require larger filter kernels.

[0055] The intermediate denoised images 406, 414, and
422 are combined, starting from a combination of the
coarsest denoised image 422 with the finer denoised image
414 using a scale compositor 424 and proceeding to a
combination of an output of the scale compositor 424 with
the finest denoised image 406 using a scale compositor 426.
The output of the scale compositor 426 is a denoised image
428 that is output by the denoising application 145. In some
embodiments, each of the scale compositors 424 and 426
takes as input a pair of coarse and fine scale images (i° and
), such as the intermediate denoised image 422 and the
intermediate denoised image 414 or the output of the scale
compositor 424 and the intermediate denoised image 406, as
shown in FIG. 4. In such cases, each of the scale compositors
424 and 426 extracts, for each pixel p, a scalar weight o, that
is used to blend consecutive scales to generate a blended
image as follows:

o=/~ (UD¥) +a,(Ui°),, ©)

where D denotes downsampling (e.g., a 2x2 downsampling)
and U denotes upsampling (e.g., a 2x2 upsampling). Such a
blending replaces low frequencies of the fine scale image ¥
with low frequencies obtained from the coarse scale image
i€ and produces the output o’. The scalar weight a,, balances
low frequencies from the finer and coarser scales. In some
embodiments, the scalar weight ¢, may be determined by
taking the intermediate images produced by denoising two
adjacent scales of a frame (or a sequence), namely a coarse-
scale image i° and a fine-scale image ¥, and inputting those
intermediate denoised images into a convolutional network
that extracts a per-pixel scalar weight o, which can then be
used to blend the coarse- and fine-scale intermediate
denoised images according to equation (3). Although
described herein primarily with respect to successive scale
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compositors that each combine a pair of coarse and fine scale
intermediate denoised images, in alternative embodiments a
single scale compositor that combines intermediate denoised
images at all of the different scales (e.g., the denoised
images 406, 414, and 422) may be used.

[0056] FIG. 5 is a more detailed illustration of the model
trainer 116 of FIG. 1, according to various embodiments. As
shown, a two-step training procedure is employed in which
the model trainer 116 uses training data 502 that includes a
set of noisy images and corresponding clean images to first
train the specialized denoisers 152. Then, the model trainer
116 uses the training data 502 and the trained specialized
denoisers 152 to train the generalizer 154. As described,
each of the specialized denoisers 152 is trained using noisy
images having noise with a different set of noise parameters
and corresponding clean images. Accordingly, the training
of'each of the specialized denoisers 152 at 504 will generally
only use some of the noisy images (and corresponding clean
images) in the training data 502 having noise with the
particular set of noise parameters for which the specialized
denoiser 152 is being trained. By contrast, a generalizer
training module 506 can use a more diverse set of images to
train the generalizer 154, such as all of the noisy images in
the training data 502 and corresponding clean images, as
well as intermediate denoised images output by the special-
ized denoisers 152 when given the noisy images from the
training data 502. For example, Gaussian noise of random
sigma ranging from 10 to 40 could be added to each image
in a data set, and such noisy images as well as intermediate
denoised images that are generated by the specialized
denoiser 152 can be fed into the generalizer 154 during
training.

[0057] Embodiments may utilize any technically feasible
training techniques to train the specialized denoisers 152 and
the generalizer 154. In some embodiments, both the gener-
alizer 154 and the specialized denoisers 152 are trained
using image patches of size 128x128, using mini-batch size
16 and the Adam optimizer with an initial learning rate of
107, as well as dataset specific schedulers to decay the
learning rate during the course of training. In some embodi-
ments, the training may use the mean absolute percentage
error (MAPE) to assess the distance to a clean reference in
the training data 502:

_3 @
= o

where X is the denoised image, y is the clean reference
image, and e=107> is used to avoid division by zero. Other
loss functions, such as L |, root mean squared error (RMSE),
and structural similarity (SSIM) may be used in alternative
embodiments.

[0058] FIGS. 6A-6C illustrate an exemplar noisy image
600, a denoised image 602 generated using a conventional
blind denoiser, and a denoised image 604 generated using
the specialized denoisers 152 and the generalizer 154 of
FIG. 1, according to various embodiments. [llustratively, the
noisy image 600 is a live-action image. As described,
live-action images can be denoised before visual effects are
added and in the case of high dynamic range images that
include a relatively large amount of noise, among other
things. Although a live-action image is shown for illustrative
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purposes, techniques disclosed herein can also be applied to
denoise rendered images, such as those generated using
Monte Carlo rendering techniques. In contrast to rendered
images, no additional information (e.g., albedo, surface
normal, depth, etc.) beyond colors are typically available for
live-action images that a denoiser can take advantage of.
[0059] As shown in FIG. 6C, the denoised image 604
generated from the noisy image 600 using the specialized
denoisers 152 and the generalizer 154 has higher quality
than the denoised image 602 generated using the conven-
tional blind denoiser, shown in FIG. 6B. Quality may be
measured as, e.g., the average distance from a corresponding
clean image. Experience has shown that the specialized
denoisers 152 and the generalizer 154 can generate denoised
images that are sharper and more robust to varying levels of
noise magnitudes compared to conventional blind denoisers.
In addition, denoised images generated using the specialized
denoisers 152 and the generalizer 154 can be at least as good
as specialized denoisers for images having noise with noise
parameters that the specialized denoisers were trained to
denoise.

[0060] FIGS. 7A-7C illustrate another exemplar noisy
image 700, a denoised image 710 generated using a con-
ventional specialized denoiser, and a denoised image 720
generated using the specialized denoisers 152 and the gen-
eralizer 154 of FIG. 1, according to various embodiments.
Zoomed-in views 706 and 708 of regions 702 and 704,
respectively, within the noisy image are shown in FIG. 7A,
Likewise, zoomed-in views 716 and 718 of regions 712 and
714, respectively, within the denoised image 710 are shown
in FIG. 7B, and zoomed-in views 706 and 708 of regions
702 and 704, respectively, within the denoised image 720 are
shown in FIG. 7C.

[0061] Similar to the noisy image 600, the noisy image
700 is shown as a live-action image, but may alternatively
be a rendered image. As shown in FIG. 7C, the denoised
image 720 generated from the noisy image 700 using the
specialized denoisers 152 and the generalizer 154 has higher
quality than the denoised image 710 generated using the
conventional specialized denoiser, shown in FIG. 7B. In
generating the denoised image 710, a specialized U-Net was
used as the conventional specialized denoiser. In generating
the denoised image 720, five U-Nets and a KPCN were used
as the specialized denoisers 152 and the generalizer 154,
respectively.

[0062] FIG. 8 sets forth a flow diagram of method steps for
training the specialized denoisers 152 and the generalizer
154, according to various embodiments. Although the
method steps are described in conjunction with the system of
FIG. 1, persons of ordinary skill in the art will understand
that any system configured to perform the method steps, in
any order, is within the scope of the present disclosure.
[0063] As shown, a method 800 begins at step 802, where
the model trainer 116 trains the specialized denoisers 152
using respective training sets of images that are associated
with different sets of noise parameters. As described, each of
the specialized denoisers 152 is trained to demise images
associated with a specific range of noise parameters.
[0064] At step 804, the model trainer 116 trains the
generalizer 154 using an additional training set of images
and denoised images output by the specialized denoisers 152
after the additional set of images is input into the trained
specialized denoisers 152. As described, the generalizer 154
is trained to take as inputs a noisy image and intermediate
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denoised images generated by the specialized denoisers 152
given the same noisy image, and to output per-pixel denois-
ing kernels. In some embodiments, the generalizer 154 is
trained using a more diverse set of images than the sets of
images used to train each of the specialized denoisers 152
individually.

[0065] FIG.9 sets forth a flow diagram of method steps for
denoising an image, according to various embodiments.
Although the method steps are described in conjunction with
the system of FIG. 1, persons of ordinary skill in the art will
understand that any system configured to perform the
method steps, in any order, is within the scope of the present
disclosure.

[0066] As shown, a method 900 begins at step 902, where
the denoising application 146 receives a noisy image. The
noisy image may be, e.g., a live-action image or a rendered
image. Further, the noisy image may either be a stand-alone
image or an image frame within a video. In some embodi-
ments, the denoising application 146 may receive and pro-
cess other images in addition to the noisy image, such as a
number of consecutive image frames before and after the
noisy image, as discussed above in conjunction with FIGS.
2 and 4.

[0067] At step 904, the denoising application 146 option-
ally downsamples the noisy image. As described, downsam-
pling may be performed in the multi-scale case to increase
the perceptive field and remove low-frequency components
of noise. In some embodiments, the noisy image may be
uniformly downsampled to half the original size during each
of one or more downsampling operations.

[0068] At step 906, the denoising application 146 pro-
cesses each of the noisy image and the downsampled images
(if any) using the specialized denoisers 152 to generate
intermediate denoised images that are to be used as
denoised-image features. As described, each of the special-
ized denoisers 152 is trained to denoise images associated
with a specific range of noise parameters. Intermediate
denoised images output by the specialized denoisers 152 are
then input as additional features, along with the original
noisy image, into the generalizer 154.

[0069] At step 908, the denoising application 146 pro-
cesses each of the noisy image and the downsampled images
(if any), along with associated denoised-image features,
using the generalizer 154 to generate additional intermediate
denoised images. As described, the generalizer 154 is a
kernel predicting network, such as a KPCN, in some
embodiments. In such cases, the denoising application 146
processes each of the noisy image and the downsampled
images (if any), along with associated denoised-image fea-
tures, using the kernel predicting network to obtain respec-
tive per-pixel denoising kernels. Then, the denoising appli-
cation 146 applies the respective denoising kernels to the
noisy image and the downsampled images (if any) to gen-
erate the additional intermediate denoised images at step
908. As described, other embodiments may employ a second
denoiser other than the generalizer 154 that is trained and
applied to denoise images given the images themselves, as
well intermediate denoised images output by the specialized
denoisers 152, as input

[0070] If the optional downsampling at step 904 is not
performed, then the denoised image generated by processing
the noisy image at step 908 is the final denoised image that
is output by the denoising application 146. Otherwise, the
method 900 proceeds to step 910.
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[0071] At step 910, the denoising application 146 option-
ally combines the intermediate denoised images to generate
a denoised image. This step assumes that the denoising
application 146 downsampled the noisy image at step 904.
As described, in some embodiments, the denoising applica-
tion 146 combines the intermediate denoised images using
scale compositors, beginning with a coarsest intermediate
denoised image and proceeding to finer intermediate
denoised images.

[0072] In sum, techniques are disclosed for training and
applying a denoising model that is capable of removing
noise from images where attributes of the noise are not
known a priori. The denoising model includes multiple
specialized denoisers and a generalizer, each of which is a
machine learning model. The specialized denoisers are
trained to denoise images associated with specific ranges of
noise parameters. The generalizer is trained to generate
per-pixel denoising kernels for denoising images associated
with arbitrary noise parameters using outputs of the trained
specialized denoisers. Subsequent to training, a noisy image,
such as a live-action image or a rendered image, can be
denoised by inputting the noisy image into the specialized
denoisers to obtain intermediate denoised images that are
then input, along with the noisy image, into the generalizer
to obtain per-pixel denoising kernels, which can be normal-
ized and applied to denoise the noisy image.

[0073] At least one technical advantage of the disclosed
techniques relative to the prior art is that the disclosed
techniques bypass the traditional tradeoff between the
denoising quality of specialized denoisers and the general-
izability and robustness of blind denoisers. In that regard,
the disclosed techniques combine the performance of spe-
cialized denoisers with the generalizing capabilities of blind
denoisers. Experience has shown that the disclosed tech-
niques can achieve better denoising quality than conven-
tional specialized denoisers when applied to images having
noise with arbitrary noise parameters, such as different noise
magnitudes. The disclosed techniques also can achieve
better overall denoising quality than conventional blind
denoisers. In addition, the disclosed techniques can denoise
images more quickly than many conventional denoisers.
These technical advantages represent one or more techno-
logical improvements over prior art approaches.

[0074] Any and all combinations of any of the claim
elements recited in any of the claims and/or any elements
described in this application, in any fashion, fall within the
contemplated scope of the present invention and protection.
[0075] 1. In some embodiments, a computer-implemented
method for denoising an image comprises processing the
image using a plurality of first denoisers to generate a
plurality of first denoised images, wherein each first
denoiser is trained to denoise images associated with at least
one noise parameter, and processing the image and the
plurality of first denoised images using a second denoiser to
generate a second denoised image.

[0076] 2. The computer-implemented method of clause 1,
further comprising downsampling the image to generate a
downsampled image, processing the downsampled image
using the plurality of first denoisers to generate a plurality of
third denoised images, processing the downsampled image
and the plurality of third denoised images using the second
denoiser to generate a fourth denoised image, and combin-
ing the second denoised image and the fourth denoised
image to produce a first blended image.
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[0077] 3, The computer-implemented method of clauses 1
or 2, wherein the second denoised image and the fourth
denoised image are combined using a scale compositor that
receives the second denoised image and the fourth denoised
image as input and outputs the first blended image.

[0078] 4. The computer-implemented method of any of
clauses 1-3, wherein the second denoiser comprises a kernel
predicting convolutional network (KPCN), and processing
the image and the plurality of first denoised images using the
second denoiser comprises inputting the image and the
plurality of first denoised images into the second denoiser to
determine per-pixel kernels, normalizing the per-pixel ker-
nels to generate normalized kernels, and denoising the
image using the normalized kernels to generate the second
denoised image.

[0079] 5. The computer-implemented method of any of
clauses 1-4, wherein each first denoiser included in the
plurality of first denoisers comprises a denoising convolu-
tional neural network (DnCNN).

[0080] 6. The computer-implemented method of any of
clauses 1-5, wherein each first denoiser included in the
plurality of first denoisers comprises a U-net architecture
network.

[0081] 7, The computer-implemented method of any of
clauses 1-6, wherein the at least one noise parameter indi-
cates at least one of a type of camera sensor or a range of
noise magnitudes.

[0082] 8. The computer-implemented method of any of
clauses 1-7, wherein the image is captured by a camera.
[0083] 9. The computer-implemented method of any of
clauses 1-8, wherein the image comprises a rendered image.
[0084] 10. In some embodiments, a computer-imple-
mented method for training denoisers comprises training
each first denoiser included in a plurality of first denoisers
using a respective set of images associated with at least one
noise parameter and ground truth images corresponding to
images included in the respective set of images, and training
a second denoiser using an additional set of images, ground
truth images corresponding to images included in the addi-
tional set of images, and a plurality of denoised images,
wherein the plurality of denoised images is generated by
processing the additional set of images using the plurality of
first denoisers.

[0085] 11. The computer-implemented method of clause
10, wherein each first denoiser included in the plurality of
first denoisers and the second denoiser is trained using a
mean absolute percentage error loss function.

[0086] 12. The computer-implemented method of clauses
10 or 11, wherein the at least one noise parameter indicates
at least one of a type of camera sensor or a range of noise
magnitudes.

[0087] 13. The computer-implemented method of any of
clauses 10-12, wherein each first denoiser included in the
plurality of first denoisers and the second denoiser receives
input comprising a single image to be denoised.

[0088] 14, The computer-implemented method of any of
clauses 10-13, wherein each first denoiser included in the
plurality of first denoisers and the second denoiser receives
input comprising an image frame to be denoised and a
plurality of image frames before and after the image frame
in a video.

[0089] 15. The computer-implemented method of any of
clauses 10-14, wherein the second denoiser comprises a
kernel predicting convolutional network (KPCN) that takes
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as input an image and denoised images generated by pro-
cessing the image using the plurality of first denoisers.
[0090] 16. The computer-implemented method of any of
clauses 10-15, wherein each first denoiser included in the
plurality of first denoisers comprises one of a denoising
convolutional neural network (DnCNN) or a U-net archi-
tecture network.

[0091] 17. The computer-implemented method of any of
clauses 10-16, wherein each image of the respective set of
images and the additional set of images comprises a ren-
dered image or an image captured by a camera.

[0092] 18. In some embodiments, a computer-readable
storage medium includes instructions that, when executed
by a processing unit, cause the processing unit to perform
steps for denoising an image, the steps comprising process-
ing the image using a plurality of first denoisers to generate
a plurality of first denoised images, wherein each first
denoiser is trained to denoise images associated with at least
one noise parameter, and processing the image and the
plurality of first denoised images using a second denoiser to
generate a second denoised image.

[0093] 19. The computer-readable storage medium of
clause 18, the steps further comprising downsampling the
image to generate a downsampled image, processing the
downsampled image using the plurality of first denoisers to
generate a plurality of third denoised images, processing the
downsampled image and the plurality of third denoised
images using the second denoiser to generate a fourth
denoised image, and combining the second denoised image
and the fourth denoised image to produce a first blended
image.

[0094] 20. The computer-readable storage medium of
clauses 18 or 19, wherein the second denoiser comprises a
kernel predicting convolutional network (KPCN), and pro-
cessing the image and the plurality of first denoised images
using the second denoiser comprises inputting the image and
the plurality of first denoised images into the second
denoiser to determine per-pixel kernels, normalizing the
per-pixel kernels to generate normalized kernels, and
denoising the image using the normalized kernels to gener-
ate the second denoised image.

[0095] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments.
[0096] Aspects of the present embodiments may be
embodied as a system, method or computer program prod-
uct. Accordingly, aspects of the present disclosure may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident soft-
ware, micro-code, etc.) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “module” or “system,” Furthermore, aspects of
the present disclosure may take the form of a computer
program product embodied in one or more computer read-
able medium(s) having computer readable program code
embodied thereon.

[0097] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
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electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0098] Aspects of the present disclosure are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, enable the implementation
of the functions/acts specified in the flowchart and/or block
diagram block or blocks. Such processors may be, without
limitation, general purpose processors, special-purpose pro-
cessors, application-specific processors, or field-program-
mable.

[0099] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0100] While the preceding is directed to embodiments of
the present disclosure, other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A computer-implemented method for denoising an
image, the method comprising:
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processing the image using a plurality of first denoisers to
generate a plurality of first denoised images; wherein
each first denoiser is trained to denoise images associ-
ated with at least one noise parameter; and

processing the image and the plurality of first denoised
images using a second denoiser to generate a second
denoised image.

2. The computer-implemented method of claim 1, further
comprising:

downsampling the image to generate a downsampled

image;

processing the downsampled image using the plurality of

first denoisers to generate a plurality of third denoised
images;

processing the downsampled image and the plurality of

third denoised images using the second denoiser to
generate a fourth denoised image; and

combining the second denoised image and the fourth

denoised image to produce a first blended image.

3. The computer-implemented method of claim 2,
wherein the second denoised image and the fourth denoised
image are combined using a scale compositor that receives
the second denoised image and the fourth denoised image as
input and outputs the first blended image.

4. The computer-implemented method of claim 1,
wherein the second denoiser comprises a kernel predicting
convolutional network (KPCN), and processing the image
and the plurality of first denoised images using the second
denoiser comprises;

inputting the image and the plurality of first denoised

images into the second denoiser to determine per-pixel
kernels;

normalizing the per-pixel kernels to generate normalized

kernels; and

denoising the image using the normalized kernels to

generate the second denoised image.

5. The computer-implemented method of claim 1,
wherein each first denoiser included in the plurality of first
denoisers comprises a demising convolutional neural net-
work (DnCNN).

6. The computer-implemented method of claim 1,
wherein each first denoiser included in the plurality of first
denoisers comprises a U-net architecture network.

7. The computer-implemented method of claim 1,
wherein the at least one noise parameter indicates at least
one of a type of camera sensor or a range of noise magni-
tudes.

8. The computer-implemented method of claim 1,
wherein the image is captured by a camera.

9. The computer-implemented method of claim 1, herein
the image comprises a rendered image.

10. A computer-implemented method for training denois-
ers, the method comprising:

training each first denoiser included in a plurality of first

denoisers using a respective set of images associated
with at least one noise parameter and ground truth
images corresponding to images included in the respec-
tive set of images; and

training a second denoiser using an additional set of

images, ground truth images corresponding to images
included in the additional set of images, and a plurality
of denoised images, wherein the plurality of denoised
images is generated by processing the additional set of
images using the plurality of first denoisers.
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11. The computer-implemented method of claim 10,
wherein each first denoiser included in the plurality of first
denoisers and the second denoiser is trained using a mean
absolute percentage error loss function.

12. The computer-implemented method of claim 10,
wherein the at least one noise parameter indicates at least
one of a type of camera sensor or a range of noise magni-
tudes.

13. The computer-implemented method of claim 10,
wherein each first denoiser included in the plurality of first
denoisers and the second denoiser receives input comprising
a single image to be denoised.

14. The computer-implemented method of claim 10,
wherein each first denoiser included in the plurality of first
denoisers and the second denoiser receives input comprising
an image frame to be denoised and a plurality of image
frames before and after the image frame in a video.

15. The computer-implemented method of claim 10,
wherein the second denoiser comprises a kernel predicting
convolutional network (KPCN) that takes as input an image
and denoised images generated by processing the image
using the plurality of first denoisers.

16. The computer-implemented method of claim 10,
wherein each first denoiser included in the plurality of first
denoisers comprises one of a denoising convolutional neural
network (DnCNN) or a U-net architecture network.

17. The computer-implemented method of claim 10,
wherein each image of the respective set of images and the
additional set of images comprises a rendered image or an
image captured by a camera.

18. A computer-readable storage medium including
instructions that, when executed by a processing unit, cause
the processing unit to perform steps for denoising an image,
the steps comprising:

processing the image using a plurality of first denoisers to

generate a plurality of first denoised images, wherein
each first denoiser is trained to denoise images associ-
ated with at least one noise parameter; and

processing the image and the plurality of first denoised
images using a second denoiser to generate a second
denoised image.

19. The computer-readable storage medium of claim 18,
the steps further comprising:

downsampling the image to generate a downsampled
image;

processing the downsampled image using the plurality of
first denoisers to generate a plurality of third denoised
images;

processing the downsampled image and the plurality of
third denoised images using the second denoiser to
generate a fourth denoised image; and

combining the second denoised image and the fourth
denoised image to produce a first blended image.

20. The computer-readable storage medium of claim 18,
wherein the second denoiser comprises a kernel predicting
convolutional network (KPCN), and processing the image
and the plurality of first denoised images using the second
denoiser comprises:

inputting the image and the plurality of first denoised

images into the second denoiser to determine per-pixel
kernels;
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normalizing the per-pixel kernels to generate normalized
kernels; and

denoising the image using the normalized kernels to
generate the second denoised image.

#* #* #* #* #*
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